Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
AIDS ; 38(6): 803-812, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38578958

ABSTRACT

OBJECTIVES: There is conflicting data regarding the response of older people with HIV (PWH) to antiretroviral therapy (ART). The objective of this study was to evaluate the long-term immunological and virological responses, changes in regimen, and adverse drug reactions (ADRs) in older participants (50+ years) compared with younger (18-34 years) and middle-aged (35-49 years) PWH. METHODS: A retrospective review of medical records was conducted on 1622 participants who received ART in Yunnan Province, China, from 2010 to 2019. The study compared CD4+ T-cell counts, CD4+/CD8+ ratio, and relative numbers between different groups using the Kruskal-Wallis test. Cox proportional hazards regression models were used to identify variables associated with the occurrence of immune reconstitution insufficiency. The rates of immune reconstitution, incidence of ADRs, and rates of treatment change were analyzed using the chi-squared test or Fisher's exact test. RESULTS: Over 95% achieved viral load 200 copies/ml or less, with no age-related difference. However, older participants exhibited significantly lower CD4+ T-cell counts and CD4+/CD8+ recovery post-ART (P < 0.001), with only 32.21% achieving immune reconstitution (compared with young: 52.16%, middle-aged: 39.29%, P < 0.001) at the end of follow-up. Middle-aged and elderly participants changed ART regimens more because of ADRs, especially bone marrow suppression and renal dysfunction. CONCLUSION: Although the virological response was consistent across age groups, older individuals showed poorer immune responses and higher susceptibility to side effects. This underscores the need for tailored interventions and comprehensive management for older patients with HIV.


Subject(s)
Anti-HIV Agents , HIV Infections , Middle Aged , Aged , Humans , HIV Infections/drug therapy , Anti-HIV Agents/adverse effects , China , Treatment Outcome , CD4 Lymphocyte Count , Viral Load
2.
Article in English | MEDLINE | ID: mdl-38535626

ABSTRACT

HIV/AIDS cannot be cured because of the persistence of the viral reservoir. Because of the complexity of the cellular composition and structure of the human organs, HIV reservoirs of anatomical site are also complex. Recently, although a variety of molecules have been reported to be involved in the establishment and maintenance of the viral reservoirs, or as marker of latent cells, the research mainly focuses on blood and lymph nodes. Now, the characteristics of the viral reservoir in tissue are not yet fully understood. In this study, various tissues were collected from SIVmac239-infected monkeys, and the level of total SIV DNA, SIV 2-LTR DNA, and cell-associated virus RNA in them were compared with character of the anatomical viral reservoir under early treatment. The results showed that short-term combination antiretroviral therapy (cART) starting from 3 days after infection could significantly inhibit viremia and reduce the size of the anatomical viral reservoir, but it could not eradicate de novo infections and ongoing replication of virus. Moreover, the effects of early cART on the level of total SIV DNA, SIV 2-LTR DNA, and cell-associated virus RNA in different tissues were different, which changed the size distribution of viral reservoir in anatomical site. Finally, the contribution of nonlymphoid tissues, especially liver and lung, to the viral reservoir increased after treatment, while the contribution of intestinal lymphoid to the viral reservoir significantly reduced. These results suggested that early treatment effectively decreased the size of viral reservoir, and that the effects of cART on the tissue viral reservoir varied greatly by tissue type. The results implied that persistent existence of virus in nonlymphoid tissues after short-term treatment suggested that the role of nonlymphoid tissues cannot be ignored in development strategies for AIDS therapy.

3.
J Integr Neurosci ; 22(4): 102, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37519174

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of noninvasive therapies in the treatment of central poststroke pain (CPSP) by network meta-analysis and to provide an evidence-based basis for clinical practice. METHODS: PubMed, Cochrane Library, EMBASE, CNKI, Wanfang, and VIP were searched for clinical randomized controlled studies on noninvasive therapy for CPSP. The retrieval time limit was from the establishment of each database to July 2022. The bias risk assessment tool recommended by Cochrane was used to evaluate the quality of the included randomized controlled trials (RCTs). Stata 14.0 was used for network meta-analysis, and Review Manager 5.3 software was used for traditional meta-analysis. RESULTS: Twelve RCTs involving 8 treatment schemes and 641 patients were finally included. The results of the network meta-analysis showed the following rankings in visual analysis scale (VAS): super laser injury on stellate ganglia (SLI) > transcranial direct current stimulation (tDCS) > music therapy (MT) > repetitive transcranial magnetic stimulation (rTMS) > continuous theta burst stimulation (cTBS) > transcutaneous acupoint electrical stimulation (TAES) > common therapy (CT). The total clinical efficiency ranked as follows: psychological training of mindfulness (PT) > rTMS > CT. Clinical adverse reactions ranked as follows: rTMS > MT > CT > SLI. CONCLUSIONS: Noninvasive complementary therapy can effectively alleviate the pain of CPSP patients, and the efficacy and safety of SLI are relatively significant. However, due to the limitations of this study, the efficacy ranking cannot fully explain the advantages and disadvantages of clinical efficacy. In the future, more multicentre, large sample, double-blind clinical randomized controlled trials are needed to supplement and demonstrate the results of this study.


Subject(s)
Neuralgia , Transcranial Direct Current Stimulation , Humans , Network Meta-Analysis , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/methods , Transcranial Direct Current Stimulation/methods , Neuralgia/etiology , Pain Management/methods , Randomized Controlled Trials as Topic
4.
Nat Commun ; 14(1): 3286, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311745

ABSTRACT

Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.


Subject(s)
COVID-19 , Longevity , Female , Humans , Aging , Inflammation , Outcome Assessment, Health Care
5.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37134013

ABSTRACT

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Subject(s)
HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Humans , Macaca nemestrina , HIV-1/genetics , Genomics , Simian Immunodeficiency Virus/genetics
6.
Cell Discov ; 9(1): 2, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609376

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Antibody resistance dampens neutralizing antibody therapy and threatens current global Coronavirus (COVID-19) vaccine campaigns. In addition to the emergence of resistant SARS-CoV-2 variants, little is known about how SARS-CoV-2 evades antibodies. Here, we report a novel mechanism of extracellular vesicle (EV)-mediated cell-to-cell transmission of SARS-CoV-2, which facilitates SARS-CoV-2 to escape from neutralizing antibodies. These EVs, initially observed in SARS-CoV-2 envelope protein-expressing cells, are secreted by various SARS-CoV-2-infected cells, including Vero E6, Calu-3, and HPAEpiC cells, undergoing infection-induced pyroptosis. Various SARS-CoV-2-infected cells produce similar EVs characterized by extra-large sizes (1.6-9.5 µm in diameter, average diameter > 4.2 µm) much larger than previously reported virus-generated vesicles. Transmission electron microscopy analysis and plaque assay reveal that these SARS-CoV-2-induced EVs contain large amounts of live virus particles. In particular, the vesicle-cloaked SARS-CoV-2 virus is resistant to neutralizing antibodies and able to reinfect naïve cells independent of the reported receptors and cofactors. Consistently, the constructed 3D images show that intact EVs could be taken up by recipient cells directly, supporting vesicle-mediated cell-to-cell transmission of SARS-CoV-2. Our findings reveal a novel mechanism of receptor-independent SARS-CoV-2 infection via cell-to-cell transmission, provide new insights into antibody resistance of SARS-CoV-2 and suggest potential targets for future antiviral therapeutics.

7.
Commun Med (Lond) ; 2(1): 151, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434092

ABSTRACT

BACKGROUND: People living with chronic disease, particularly seniors (≥60 years old), made up of most severe symptom and death cases among SARS-CoV-2 infected patients. However, they are lagging behind in the national COVID-19 vaccination campaign in China due to the uncertainty of vaccine safety and effectiveness. Safety and immunogenicity data of COVID-19 vaccines in people with underlying medical conditions are needed to address the vaccine hesitation in this population. METHODS: We included participants (≥40 years old) who received two doses of CoronaVac inactivated vaccines (at a 3-5 week interval) and were healthy or had at least one of 6 common chronic diseases. The incidence of adverse events after vaccination was monitored. Vaccine immunogenicity was studied by determining neutralizing antibodies and SARS-CoV-2-specific T cell responses post vaccination. RESULTS: Here we show that chronic diseases are associated with a higher rate of mild fatigue following the first dose of CoronaVac. By day 14-28 post vaccination, the neutralizing antibody level shows no significant difference between disease groups and healthy controls, except for people with coronary artery disease (p = 0.0287) and chronic respiratory disease (p = 0.0416), who show moderate reductions. Such differences diminish by day 90 and 180. Most people show detectable SARS-CoV-2-specific T cell responses at day 90 and day 180 without significant differences between disease groups and healthy controls. CONCLUSIONS: Our results highlight the comparable safety, immunogenicity and cellular immunity memory of CoronaVac in seniors and people living with chronic diseases. This data should reduce vaccine hesitancy in this population.


People living with chronic diseases, particularly those over the age of 60, are more likely to have severe symptoms and die following SARS-CoV-2 infection. However, many have not been vaccinated during the national COVID-19 vaccination campaign in China due to concerns about vaccine safety and effectiveness. Here we show that the inactivated COVID-19 vaccine, CoronaVac, is as safe in older people with chronic diseases as it is for healthy people. Also, only slightly differences are seen in the immune response of people with diseases compared to healthy people. Overall, our results highlight that the CoronaVac vaccine is safe and effective in people living with chronic diseases.

8.
Cell Mol Immunol ; 19(9): 1042-1053, 2022 09.
Article in English | MEDLINE | ID: mdl-35851876

ABSTRACT

The number of elderly people living with HIV is increasing globally, and the condition of this population is relatively complicated due to the dual effects of aging and HIV infection. However, the impact of HIV infection combined with aging on the immune homeostasis of secondary lymphoid organs remains unclear. Here, we used the simian immunodeficiency virus mac239 (SIVmac239) strain to infect six young and six old Chinese rhesus macaques (ChRMs) and compared the infection characteristics of the two groups in the chronic stage through multiplex immunofluorescence staining of lymph nodes. The results showed that the SIV production and CD4/CD8 ratio inversion in old ChRMs were more severe than those in young ChRMs in both the peripheral blood and the lymph nodes, especially when a large number of CD8+ T cells infiltrated the follicles and germinal centers. STAT3 in these follicular CXCR5+CD8+ T cells was highly activated, with high expression of granzyme B, which might be caused by the severe inflammatory milieu in the follicles of old ChRMs. This study indicates that aging may be a cofactor involved in SIV-induced immune disorders in secondary lymphoid tissues, affecting the effective antiviral activity of highly enriched follicular CXCR5+CD8+ cells.


Subject(s)
Aging , CD8-Positive T-Lymphocytes , STAT3 Transcription Factor , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes/immunology , HIV Infections , Humans , Macaca mulatta/immunology , Receptors, CXCR5/metabolism , STAT3 Transcription Factor/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Virus Replication
9.
Viruses ; 14(4)2022 03 30.
Article in English | MEDLINE | ID: mdl-35458449

ABSTRACT

Pulmonary microbial invasion frequently occurs during AIDS progression in HIV patients. Inflammatory cytokines and other immunoregulatory factors play important roles in this process. We previously established an AIDS model of SIVmac239 infection in northern pig-tailed macaques (NPMs), which were divided into rapid progressor (RP) and slow progressor (SP) groups according to their AIDS progression rates. In this study, we performed 16S rDNA and transcriptome sequencing of the lungs to reveal the molecular mechanism underlying the difference in progression rate between the RPs and SPs. We found that microbial invasion in the RP group was distinct from that in the SP group, showing marker flora of the Family XI, Enterococcus and Ezakiella, and more Lactobacilli. Through pulmonary transcriptome analysis, we found that the transcription factor ZNF683 had higher expression in the SP group than in the RP group. In subsequent functional experiments, we found that ZNF683 increased the proliferation and IFNγ secretion ability of CD8+ T cells, thus decreasing SIV or HIV replication, which may be related to AIDS progression in SIVmac239-infected NPMs. This study helps elucidate the various complexities of disease progression in HIV-1-infected individuals.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Interferon-gamma , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Transcription Factors , Animals , CD8-Positive T-Lymphocytes , HIV Infections/metabolism , HIV Infections/pathology , Humans , Interferon-gamma/metabolism , Macaca , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virus Replication
10.
Cell Discov ; 8(1): 9, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35102138

ABSTRACT

Safe, effective, and economical vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to achieve adequate herd immunity and end the pandemic. We constructed a novel SARS-CoV-2 vaccine, CoVac501, which is a self-adjuvanting peptide vaccine conjugated with Toll-like receptor 7 (TLR7) agonists. The vaccine contains immunodominant peptides screened from the receptor-binding domain (RBD) and is fully chemically synthesized. It has been formulated in an optimized nanoemulsion formulation and is stable at 40 °C for 1 month. In non-human primates (NHPs), CoVac501 elicited high and persistent titers of protective neutralizing antibodies against multiple RBD mutations, SARS-CoV-2 original strain, and variants (B.1.1.7 and B.1.617.2). Specific peptides booster immunization against the B.1.351 variant has also been shown to be effective in improving protection against B.1.351. Meanwhile, CoVac501 elicited the increase of memory T cells, antigen-specific CD8+ T-cell responses, and Th1-biased CD4+ T-cell immune responses in NHPs. Notably, at an extremely high SARS-CoV-2 challenge dose of 1 × 107 TCID50, CoVac501 provided near-complete protection for the upper and lower respiratory tracts of cynomolgus macaques.

11.
Medicine (Baltimore) ; 101(52): e32383, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36595980

ABSTRACT

BACKGROUND: To evaluate the efficacy of multiple acupoint combinations for the treatment of post-stroke cognitive impairment (PSCI) using a network meta-analysis method. METHODS: Searches for clinical randomized controlled trials (RCTs) of various types of acupuncture treatments for post-stroke cognitive dysfunction were conducted, data were extracted from studies selected according to the inclusion criteria, and the RCTs included in the analysis were assessed separately for risk of literature bias. Network meta-analysis was performed using Stata 14.0. RESULTS: Sixteen RCTs involving 1257 patients were included, which involved 9 groups of acupoint treatment plans. The best treatment plan for improving the mini-mental state examination score of PSCI was a cephalic plexus spur (99.7%). The best treatment option for improving the montreal cognitive assessment score for PSCI was Zishen Yisui acupuncture therapy (ZSYSA) (77.3%). The best option for improving the barthel index score of PSCI was ZSYSA (99.2%). In terms of improving the overall clinical outcomes of PSCI, the best treatment option for improving the overall clinical effectiveness of PSCI is ZSYSA Therapy (92.2%). CONCLUSION: The analysis of all results shows that ZSYSA can significantly improve PSCI compared to other acupuncture therapies. STRENGTHS AND LIMITATIONS OF THIS STUDY: This is the 1st study on the treatment of PSCI with different acupoint combinations based on a network meta-analysis method, which provides a reference for clinical rehabilitation workers; all included studies were randomized controlled trials, which increased the reliability of this study. Limitations; The number of relevant clinical studies retrieved was too small, and all included clinical trials were located in China; therefore, there is a great possibility of publication bias; Most of the included studies did not clearly explain the random distribution mode, follow-up, distribution concealment, or other experimental conditions. Therefore, selection and reporting biases cannot be excluded, suggesting that the quality of the literature is not high; Because of the strict inclusion criteria, the number of studies was limited, and subgroup analysis could not be performed according to the time of onset and the length of the disease course.


Subject(s)
Cognitive Dysfunction , Stroke , Humans , Network Meta-Analysis , Acupuncture Points , Stroke/complications , Stroke/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Treatment Outcome , Randomized Controlled Trials as Topic
12.
Signal Transduct Target Ther ; 6(1): 428, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921131

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
COVID-19/metabolism , Cell Degranulation , Lung Injury/metabolism , Mast Cells/metabolism , Pulmonary Alveoli/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Cell Line, Tumor , Female , Humans , Lung Injury/genetics , Lung Injury/virology , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Transgenic , Pulmonary Alveoli/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
Free Radic Biol Med ; 177: 143-155, 2021 12.
Article in English | MEDLINE | ID: mdl-34687865

ABSTRACT

Intestinal epithelial barrier destruction occurs earlier than mucosal immune dysfunction in the acute stage of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. At present, however, the cause of compromised gastrointestinal integrity in early SIV infection remains unknown. In the current study, we investigated the effects of SIV infection on epithelial barrier integrity and explored oxidative stress-mediated DNA damage and apoptosis in epithelial cells from early acute SIVmac239-infected Chinese rhesus macaques (Macaca mulatta). Results showed that the sensitive molecular marker of small intestinal barrier dysfunction, i.e., intestinal fatty acid-binding protein (IFABP), was significantly increased in plasma at 14 days post-SIV infection. SIV infection induced a profound decrease in the expression of tight junction proteins, including claudin-1, claudin-3, and zonula occludens (ZO)-1, as well as a significant increase in the active form of caspase-3 level in epithelial cells. RNA sequencing (RNA-seq) analysis suggested that differentially expressed genes between pre- and post-SIV-infected jejuna were enriched in pathways involved in cell redox homeostasis, oxidoreductase activity, and mitochondria. Indeed, a SIV-mediated increase in reactive oxygen species (ROS) in the epithelium and macrophages, as well as an increase in hydrogen peroxide (H2O2) and decrease in glutathione (GSH)/glutathione disulfide (GSSG) antioxidant defense, were observed in SIV-infected jejuna. In addition, the accumulation of mitochondrial dysfunction and DNA oxidative damage led to an increase in senescence-associated ß-galactosidase (SA-ß-gal) and early apoptosis in intestinal epithelial cells. Furthermore, HIV-1 Tat protein-induced epithelial monolayer disruption in HT-29 cells was rescued by antioxidant N-acetylcysteine (NAC). These results indicate that mitochondrial dysfunction and oxidative stress in jejunal epithelial cells are primary contributors to gut epithelial barrier disruption in early SIV-infected rhesus macaques.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Hydrogen Peroxide , Intestinal Mucosa , Macaca mulatta , Reactive Oxygen Species
14.
Signal Transduct Target Ther ; 6(1): 328, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471088

ABSTRACT

Understanding the pathological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in an animal model is crucial for the treatment of coronavirus disease 2019 (COVID-19). Here, we compared immunopathological changes in young and old rhesus macaques (RMs) before and after SARS-CoV-2 infection at the tissue level. Quantitative analysis of multiplex immunofluorescence staining images of formalin-fixed paraffin-embedded (FFPE) sections showed that SARS-CoV-2 infection specifically induced elevated levels of apoptosis, autophagy, and nuclear factor kappa-B (NF-κB) activation of angiotensin-converting enzyme 2 (ACE2)+ cells, and increased interferon α (IFN-α)- and interleukin 6 (IL-6)-secreting cells and C-X-C motif chemokine receptor 3 (CXCR3)+ cells in lung tissue of old RMs. This pathological pattern, which may be related to the age-related pro-inflammatory microenvironment in both lungs and spleens, was significantly correlated with the systemic accumulation of CXCR3+ cells in lungs, spleens, and peripheral blood. Furthermore, the ratio of CXCR3+ to T-box protein expression in T cell (T-bet)+ (CXCR3+/T-bet+ ratio) in CD8+ cells may be used as a predictor of severe COVID-19. These findings uncovered the impact of aging on the immunopathology of early SARS-CoV-2 infection and demonstrated the potential application of CXCR3+ cells in predicting severe COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cellular Microenvironment/immunology , Lung/immunology , Receptors, CXCR3/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Disease Models, Animal , Inflammation/immunology , Inflammation/pathology , Interferon-alpha/immunology , Interleukin-6/immunology , Lung/pathology , Lung/virology , Macaca mulatta , Male
15.
ACS Omega ; 6(26): 16763-16774, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34250336

ABSTRACT

Pathological cardiac hypertrophy is commonly associated with an upregulation of fetal genes, fibrosis, cardiac dysfunction, and heart failure. Previous studies have demonstrated that gastrodin (GAS) exerts cardioprotective action in the treatment of cardiac hypertrophy. However, the mechanism by which GAS protects against cardiac hypertrophy is yet to be elucidated. A mouse model of myocardial hypertrophy was established using an angiotensin II (Ang II) induction. GAS (5 or 50 mg/kg/d) was orally administered every day starting 7 days prior to the Ang II infusion combined with sham-operated controls. Heart samples from each group were collected for RNA sequencing. Using bioinformatics analysis, the key differentially expressed genes (DEGs) that are involved in reversing cardiac function were identified. Through bioinformatics analysis, the key DEGs that are involved in GAS's inhibition of Ang II-induced abnormal gene expression within the heart were identified. This was further validated using quantitative real-time PCR and Western blotting in neonatal rat cardiomyocytes (NRCMs). Oral administration of GAS significantly suppressed the Ang II-induced increase in heart size and heart weight to body weight. Furthermore, pretreatment of the NRCMs with GAS led to a dose-dependent inhibition of Ang II-induced increases in Nppb mRNA expression. We identified 620 upregulated and 87 downregulated Ang II-induced DEGs II, among which the expression patterns of 58 and 146 genes were inverted by low-dose and high-dose GAS, respectively. These inverted DEGs were found to be mainly enriched in the biological processes of regulation of Ras protein signal transduction, heart contraction, covalent chromatin modification, glucose metabolism, and positive regulation of cell cycle. Among them, the insulin-like growth factor type 2 (Igf2) gene, which was found to be highly reversed and downregulated by GAS, served as a core gene linking energy metabolism, immune regulation, and systemic development. Subsequent functional verification demonstrated that IGF2, and its receptor IGF2R, is one of the targets of GAS that helps protect against cardiac hypertrophy. Taken together, we have identified, for the first time, IGF2/IGF2R as a potential target influenced by GAS in the prevention of cardiac hypertrophy.

16.
J Virol ; 95(16): e0002021, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076481

ABSTRACT

The host range of human immunodeficiency virus type 1 (HIV-1) is narrow. Therefore, using ordinary animal models to study HIV-1 replication, pathogenesis, and therapy is impractical. The lack of applicable animal models for HIV-1 research spurred our investigation on whether tree shrews (Tupaia belangeri chinensis), which are susceptible to many types of human viruses, can act as an animal model for HIV-1. Here, we report that tree shrew primary cells are refractory to wild-type HIV-1 but support the early replication steps of HIV-1 pseudotyped with the vesicular stomatitis virus glycoprotein envelope (VSV-G), which can bypass entry receptors. The exogenous expression of human CD4 renders the tree shrew cell line infectible to X4-tropic HIV-1IIIB, suggesting that tree shrew CXCR4 is a functional HIV-1 coreceptor. However, tree shrew cells did not produce infectious HIV-1 progeny virions, even with the human CD4 receptor. Subsequently, we identified tree shrew (ts) apolipoprotein B editing catalytic polypeptide 3 (tsAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity, with virus infectivity reduced 10- to 1,000-fold. Unlike human APOBEC3G, the tsA3Z2c-Z1b protein was not degraded by the HIV-1 viral infectivity factor (Vif) but markedly restricted HIV-1 replication through mutagenicity and reverse transcription inhibition. The pooled knockout of tsA3Z2c-Z1b partially restored the infectivity of the HIV-1 progeny. This work suggests that tsAPOBEC3 proteins serve as an additional barrier to the development of HIV-1 tree shrew models, even when virus entry is overcome by exogenous expression of human CD4. IMPORTANCE The development of animal models is critical for studying human diseases and their pathogenesis and for evaluating drug and vaccine efficacy. For improved AIDS research, the ideal animal model of HIV-1 infection should be a small laboratory mammal that closely mimics virus replication in humans. Tree shrews exhibit considerable potential as animal models for the study of human diseases and therapeutic responses. Here, we report that human CD4-expressing tree shrew cells support the early steps of HIV-1 replication and that tree shrew CXCR4 is a functional coreceptor of HIV-1. However, tree shrew cells harbor additional restrictions that lead to the production of HIV-1 virions with low infectivity. Thus, the tsAPOBEC3 proteins are partial barriers to developing tree shrews as an HIV-1 model. Our results provide insight into the genetic basis of HIV inhibition in tree shrews and build a foundation for the establishment of gene-edited tree shrew HIV-1-infected models.


Subject(s)
APOBEC Deaminases/metabolism , CD4 Antigens/metabolism , HIV-1/physiology , Receptors, CCR5/metabolism , Tupaia/virology , Virus Replication , APOBEC Deaminases/genetics , Animals , Cells, Cultured , HIV-1/genetics , Humans , Membrane Glycoproteins/genetics , Models, Animal , Receptors, CXCR4/metabolism , Recombinant Proteins/genetics , Viral Envelope Proteins/genetics , Virus Integration
17.
Front Plant Sci ; 12: 673200, 2021.
Article in English | MEDLINE | ID: mdl-34108984

ABSTRACT

Exploring the effects of orographic events and climatic shifts on the geographic distribution of organisms in the Himalayas-Hengduan Mountains (HHM) region and Qinghai-Tibetan Plateau (QTP) is crucial to understand the impact of environmental changes on organism evolution. To gain further insight into these processes, we reconstructed the evolutionary history of nine Chamaesium species distributed across the HHM and QTP regions. In total, 525 individuals from 56 populations of the nine species were analyzed based on three maternally inherited chloroplast fragments (rpl16, trnT-trnL, and trnQ-rps16) and one nuclear DNA region (internal transcribed spacer, ITS). Fifty-two chloroplast DNA (cpDNA) and 47 ITS haplotypes were identified in nine species. All of the cpDNA and ITS haplotypes were species-specific. Phylogenetic analysis suggested that all nine species form a monophyletic clade with high support. Dating analysis and ancestral area reconstruction revealed that the ancestral group of Chamaesium originated in the southern Himalayan region at the beginning of the Paleogene (60.85 Ma). The nine species of Chamaesium then separated well during the last 25 million years started in Miocene. Our maxent modeling indicated the broad-scale distributions of all nine species remained fairly stable from LIG to the present and predicted that it will remain stable into the future. The initial split of Chamaesium was triggered by climate changes following the collision of the Indian plate with the Eurasia plate during the Eocene. Subsequently, divergences within Chamaesium may have been induced by the intense uplift of the QTP, the onset of the monsoon system, and Central Asian aridification. Long evolutionary history, sexual reproduction, and habitat fragmentation could contribute to the high level of genetic diversity of Chamaesium. The higher genetic differentiation among Chamaesium populations may be related to the drastic changes of the external environment in this region and limited seed/pollen dispersal capacity.

18.
Zool Res ; 42(3): 350-353, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33998182

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has become an unprecedented global health emergency. At present, SARS-CoV-2-infected nonhuman primates are considered the gold standard animal model for COVID-19 research. Here, we showed that northern pig-tailed macaques ( Macaca leonina, NPMs) supported SARS-CoV-2 replication. Furthermore, compared with rhesus macaques, NPMs showed rapid viral clearance in lung tissues, nose swabs, throat swabs, and rectal swabs, which may be due to higher expression of interferon (IFN)-α in lung tissue. However, the rapid viral clearance was not associated with good outcome. In the second week post infection, NPMs developed persistent or even more severe inflammation and body injury compared with rhesus macaques. These results suggest that viral clearance may have no relationship with COVID-19 progression and SARS-CoV-2-infected NPMs could be considered as a critically ill animal model in COVID-19 research.


Subject(s)
COVID-19/immunology , COVID-19/virology , Macaca nemestrina , SARS-CoV-2/immunology , Animals , Disease Models, Animal , Interferon-alpha/analysis , Interleukin-1beta/analysis , Interleukin-6/analysis , Lung/immunology , Lung/virology , Nose/virology , Pharynx/virology , RNA, Viral/analysis , Rectum/virology , SARS-CoV-2/genetics
20.
Zool Res ; 42(2): 161-169, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33554485

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) continue to impact countries worldwide. At present, inadequate diagnosis and unreliable evaluation systems hinder the implementation and development of effective prevention and treatment strategies. Here, we conducted a horizontal and longitudinal study comparing the detection rates of SARS-CoV-2 nucleic acid in different types of samples collected from COVID-19 patients and SARS-CoV-2-infected monkeys. We also detected anti-SARS-CoV-2 antibodies in the above clinical and animal model samples to identify a reliable approach for the accurate diagnosis of SARS-CoV-2 infection. Results showed that, regardless of clinical symptoms, the highest detection levels of viral nucleic acid were found in sputum and tracheal brush samples, resulting in a high and stable diagnosis rate. Anti-SARS-CoV-2 immunoglobulin M (IgM) and G (IgG) antibodies were not detected in 6.90% of COVID-19 patients. Furthermore, integration of nucleic acid detection results from the various sample types did not improve the diagnosis rate. Moreover, dynamic changes in SARS-CoV-2 viral load were more obvious in sputum and tracheal brushes than in nasal and throat swabs. Thus, SARS-CoV-2 nucleic acid detection in sputum and tracheal brushes was the least affected by infection route, disease progression, and individual differences. Therefore, SARS-CoV-2 nucleic acid detection using lower respiratory tract samples alone is reliable for COVID-19 diagnosis and study.


Subject(s)
COVID-19 Testing/veterinary , COVID-19/diagnosis , SARS-CoV-2/genetics , Animals , Antibodies, Viral , Disease Models, Animal , Haplorhini , Humans , Longitudinal Studies , Pharynx/virology , Predictive Value of Tests , SARS-CoV-2/immunology , Specimen Handling , Sputum/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...